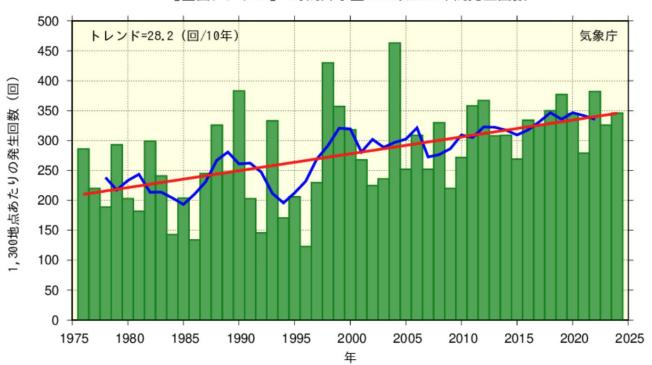
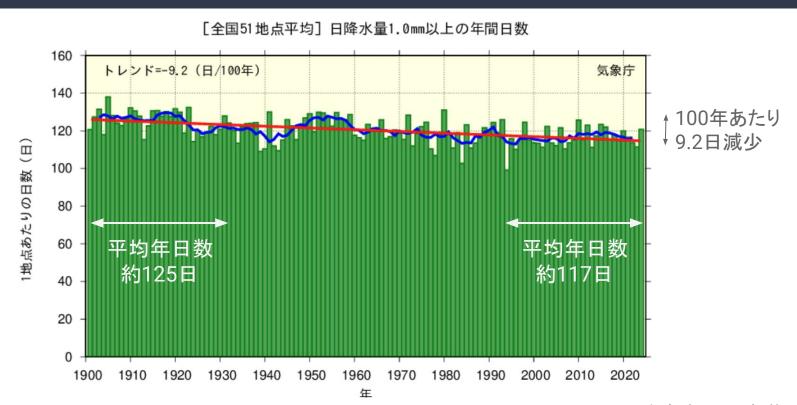
気候変動時代のデータ駆動型スマート農業 - DVI×AWD×水田センサーが拓く、次の稲作 -


気候変動の時代、「経験と勘」だけでは守れない

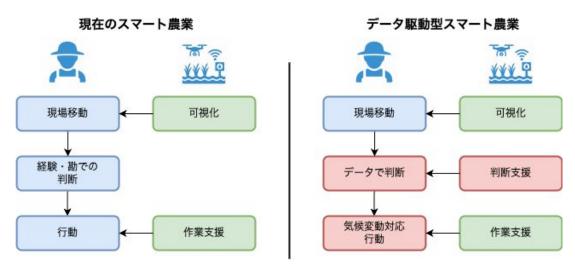
目次


- 1. 気候変動の状況
- 2. 現在のスマート農業の状況
- 3. 水稲栽培のデータ駆動型スマート農業
 - a. DVI(発育指数)について
 - b. AWD(節水型)水管理について
 - c. DVI+AWD+水田センサーを組み合わせた水管理の実証結果
- 4. データ駆動型スマート農業の普及と課題

1. 1時間降水量50mm以上の年間発生回数の推移

[全国アメダス] 1時間降水量50mm以上の年間発生回数

1. 日降水量1.0mm以上の年間日数の推移

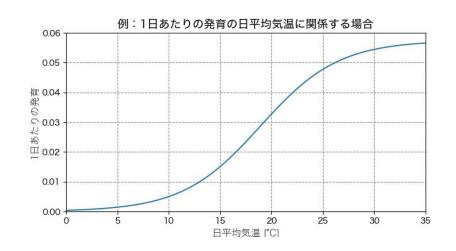

1. 気候変動がもたらす農業への影響

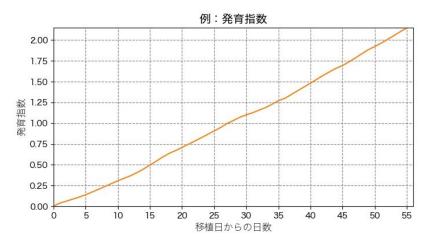
- ▶ 降水量は1回度の降水量は増加、降水頻度は減少傾向があります。 言い換えると、降水の極端化が進んでいます。
- ▶ 農業影響としては「水資源」の極端化が顕在化しています。
 水がある時は今まで以上、ない時は今まで以下という状況です。
- ▶ 加えて、平均気温上昇の影響が大きくなっています。

水と気温影響が経験で読めない時代だからこそ、 "データで判断する農業"への転換が必要です。

2.「可視化」・「作業支援」の既存スマート農業

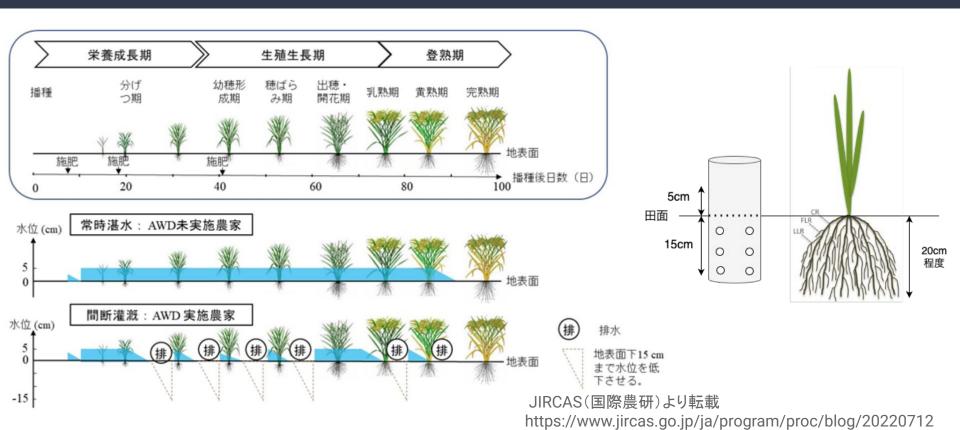
- 「可視化(遠隔監視)」・「作業支援(ロボット技術)」がスマート農業の中心で、「判断」・「行動」は作業者の経験に委ねられています。
- 気候変動の今、スマート農業で必要とされるのが「判断支援」・「気候変動に対応した行動」です。


3. 水稲のデータ駆動型スマート農業の事例


- ➤ 「水田センサー」「DVI(発育指数)」「AWD水管理」を組み合わせた水管理の事例に なります。
- → 3要素を組み合わせることで、省力化、節水効果、気候変動に対応した水管理が可能となります。

要素	役割	導入コスト	学習コスト	備考
水田センサー	可視化	低	中	使い方に慣れることがポイント
DVI	判断支援	低	高	完全理解できなくても判断支援として受け 入れられるかがポイント
AWD水管理	気候対応	なし	低	知識として知っていること、原理の理解が ポイント

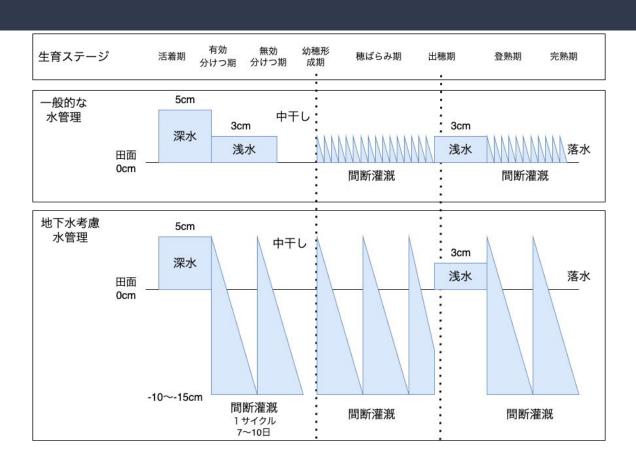
3. DVI(発育指数)とは?


- ▶ 「気温・日長(気温のみ)」を入力情報として、1日あたりのイネの発育を数値化 (DVR)し、それを積算したものがDVIになります。
- ≫ 将来の気象情報が分かれば、発育指数の予測が可能です。

https://eng-blog.iij.ad.jp/archives/12939

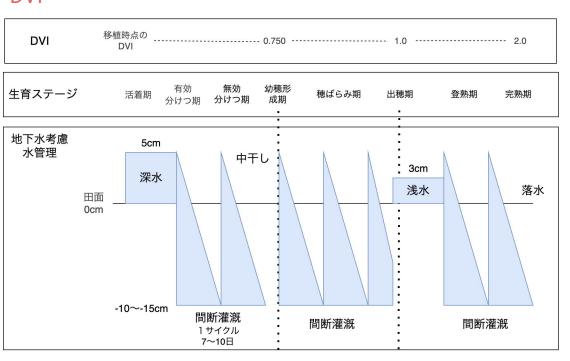
3. AWD水管理(海外版)

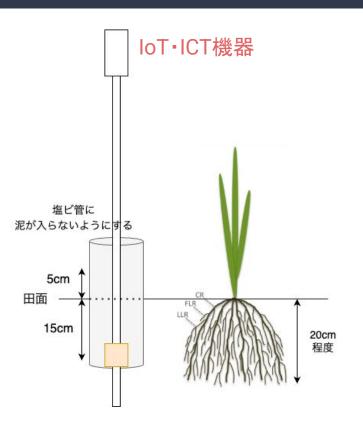
3. AWD水管理


- ➤ 国際稲研究所(フィリピン)が1990年代に「節水」目的で開発され水管理方法です。 2000年代から東南アジアで導入されています。
- ➢ 湛水水管理と比較し10~30%程度の節水効果が得られとされています。 ただし、環境条件で大きく変動します。
- ▶ メタンガスの排出を30%減少させる効果が報告されています。 これは中干し期間7日延長と同程度の効果になります。

注意事項

土壌を乾燥させるとヒ素吸収を抑える一方で、カドミウム吸収が増加します。


農水省:コメ中のカドミウム及びヒ素低減のための実施指針を参照 https://www.maff.go.jp/j/syouan/nouan/kome/k_cd/attach/pdf/sisin-1.pdf


3. AWD水管理(国内版)

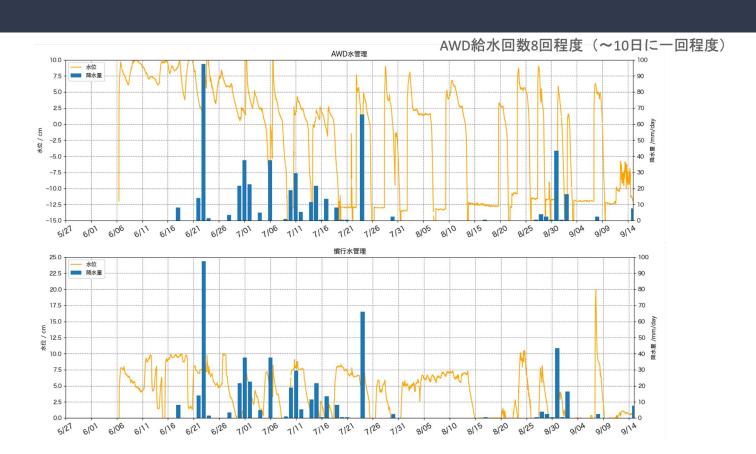
3. DVI+AWD+水田センサーの水管理

AWD

3. 実証結果(福井県·2024年)

	品種	移植	AWD開始	幼穂形成期	出穂期	坪刈り実施
AWD区	コシヒカリ	5/22	6/20	7/13	8/3	9/12
慣行区	コシヒカリ	5/22	-	7/13	8/2	9/12

機器設置状況



幼穂形成期から1週間後

収穫直前(坪刈り時)の 土壌状況

水管理状況の比較

3. 地下系の比較

3. 収量•品質結果

【収量】※1

	全重	ワラ重	籾重	粗玄米重	精玄米重※2	屑米重※3
	(kg/10a)	(kg/10a)	(kg/10a)	(kg/10a)	(kg/10a)	(kg/10a)
試験(AWD)	1, 594	886	673	518	429 (132)	90
慣行	1, 190	568	589	445	324	121

	穂数	一穂籾数	全籾数	登熟歩合	千粒重	計算収量※4
	(本/m²)	(粒/穂)	(百粒/㎡)	(%)	(g/千粒)	(kg/10a)
試験(AWD)	390	76. 9	300	66. 1	20. 5	406 (126)
慣行	300	83. 9	252	64. 2	20. 0	323

【外観品質・食味】(品質判定機:静岡 ES-5、食味計:静岡 TM-3500)

	整粒	未熟粒	被害粒	玄米タンパク	水分	食味
	(%)	(%)	(%)	(%)	(%)	スコア
試験(AWD)	44. 3	47. 5	6. 9	4.8	14. 0	91
慣行	38. 7	53. 5	7. 0	4.8	14. 1	91

DVI+AWD+水田センサーの実証まとめ

- ▶ DVIで栽培基準が明確になり、水を必要とする時期を予測できます。 (DVIでの水管理完全自動化は実証済)
- ⇒ 栽培による高温障害耐性(地下茎)を上げることができる可能性があります。地上 部は調査中です。
- ▶ 節水(=省力)水管理で水資源・人材資源の効率化を計っています。
- ➤ 水田センサーで状況を可視化でリスクを低減しています。
- 平均的な収量を得ることができます。
- ▶ メタンガス発生を抑制します。
- 最低限の機器のみのため導入コストを抑えられます。
- ⇒ カドミウム吸収が促進されることには注意が必要です。